The Super Elongation Complex Drives Neural Stem Cell Fate Commitment
نویسندگان
چکیده
منابع مشابه
The Complex Cartography of Stem Cell Commitment
In this issue of Cell, a study by Adolfsson and coworkers (Adolfsson et al., 2005) provides insight into the early lineage commitment events of multipotent hematopoietic stem cells (HSCs). These studies demonstrate the importance of the Flt3 receptor tyrosine kinase as the earliest marker of hematopoietic cell fate commitment in that erythrocyte and megakaryocyte potentials are lost first as HS...
متن کاملmiRNA activity directs stem cell commitment to a particular fate.
Extra-cellular ligands and cytokines instruct stem cells to pick specific fates and to activate corresponding genetic programs into differentiation. When a stem cell responds to such an external cue, it is first specified to take a particular differentiation route and then becomes irreversibly obliged or committed, to its future fate. Only later, upon full activation of the new genetic program ...
متن کاملEpigenetic control of neural stem cell fate.
Unraveling the mechanisms by which neural stem cells generate distinct cell types remains a central challenge in central nervous system (CNS) biology. Recent studies have shown that epigenetic gene regulation plays an important role in the control of cell growth and differentiation. These epigenetic controls cover a wide spectrum, including the interaction of chromatin remodeling enzymes with n...
متن کاملBuilding a super elongation complex for HIV
A better understanding of the host cell protein complex that helps HIV replicate inside cells offers the possibility of new therapeutic targets.
متن کاملThe neural stem cell fate determinant TRIM32 regulates complex behavioral traits
In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ)-olfactory bulb (OB) system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Cell
سال: 2017
ISSN: 1534-5807
DOI: 10.1016/j.devcel.2017.02.022